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Abstract-This paper is concerned with the initiation of debonding at an interface of two elastic solids of different
elastic constants and mass densities. The debonding is caused by stress concentrations that are generated when a
system of transient horizontally polarized shear waves strikes the tip of an interface flaw. It is assumed that rupture
of the adhesive bond is preceded by yielding ofthe adhesive. It is shown that for a system of step·stress waves the zone
of interface yielding initially extends linearly with time. For various values of the parameters defining the materials
and the system of waves the speed of the leading edge of the zone of interface yielding is computed. Analytic
expressions are presented for the time of rupture and for the interface stress ahead of the yield zone.

1. INTRODUCTION

BODIES consisting of layers of different materials glued, fused or otherwise continuously
joined, or simply pressed together, appear in nature as well as in man-made structures.
An example in nature is the stratification of the earth, Manufactured laminated media are
used frequently for structural applications in engineering.

Generally it is not realistic to assume that the contact between different layers is perfect.
Indeed, in geophysical stratifications faults occur at the interfaces, while in manufactured
laminates adjoining layers may not be properly adhered, so that the interfaces may contain
small and difficult to detect flaws. Under the action of external forces interface flaws give
rise to stress concentrations, which may cause a flaw to extend and which thus may form
the nucleus of considerable interface failure.

In the analysis of elastodynamic problems it is often found that at certain specific
locations in a body the dynamic stresses are higher than the stresses computed from the
corresponding problem of static equilibrium. This effect occurs, for example, w~en a wave
is diffracted by a crack. For horizontally polarized shear waves the dynamic overshoot of
the stresses near the edge of a crack in a homogeneous material was examined in [1].
It was shown in [1,2] that in view of the dynamic overshoot of the stress concentrations
it is possible that extension of a flaw mayor may not occur depending on whether the
loads are suddenly or gradually applied.

In this paper we examine the conditions for extension of an interface flaw upon dif­
fraction of a system of transient waves. For incident pulses which show rapid increases of
the field variables at the wavefronts, the maximum values of the stresses are reached very
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shortly after the flaw has been struck. As a consequence we will focus attention on the stress
field for small times and in the vicinity of the edge of the flaw. This type of information on
the stresses can, however, be obtained by investigating diffraction by an extending semi­
infinite flaw at the interface of two half-spaces of distinct solids. To simplify the analysis
further we consider the case that the incident waves which propagate along the bonded
part of the interface prior to reaching the flaw are horizontally polarized.

As an interface flaw extends, the breaking of the interface bond may be considered as
either brittle or ductile fracture. In this paper it is assumed that bond rupture is preceded
by plastic deformation of the bond, but not of the adjoining materials. Thus, as the vicinity
of the interface flaw is placed in a (dynamic) state of stress, a small region of yielding is
assumed to develop at the interface in the vicinity of the edge of the flaw. This zone of
yielding grows until the relative displacement between the two materials at the edge of the
flaw becomes so great that the yielded bond ruptures and free fracture surface is formed.

2. FORMULATION

Referring to a Cartesian coordinate system x', y', Zl, we consider two half-spaces of
distinct linearly elastic homogeneous isotropic solids whose interface is defined by the
plane y' = 0, see Fig. 1. For x' 2:: °the half-spaces are in bonded contact, while no bond

undisturbed

FIG. 1. System of horizontally polarized shear waves approaching an interface flaw.

exists for x' < 0. It is assumed that the bonding layer between the half-spaces (y' = 0,
x' ~ 0) has a vanishingly small thickness and is rigid-perfectly plastic in nature.

The material properties and the field variables in region 1, where y' :s;; 0, and region 2,
where y' ~ 0, are labeled with the subscripts 1 and 2, respectively. For the two-dimensional
problem considered here the propagation of horizontally polarized shear waves in the
homogeneous, isotropic, linearly elastic medium of region 1 is governed by the wave
equation

(2.1)

where w 1(x' , y', t) is the displacement in the z'-direction, V2 is the two-dimensional Lap­
lacian with respect to the coordinates x' and y', and C I is the velocity of shear waves,

c1 = (J1dpl)t. (2.2)
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In (2.2), JlI and PI are the shear modulus and mass density, respectively. The shear stresses
in region 1 are

(2.3a, b)

(2.4)

A set of equations analogous to (2.1H2.3) holds in region 2. No generality is lost if we
assume that CI > C2'

For time t < 0 a plane horizontally polarized shear wave of the general form

i
C1t+ x' coser: - y' sin II

W~ (X', y', t) = Ail H(c I t +x' cos <X - y' sin <x) 0 G(u) du,

where H( ) is the Heaviside step function and 0 < <x :::;; rr./2 impinges upon the bonded
interface and thus gives rise to a system of plane reflected and transmitted waves, as shown
in Fig. 1. These reflected and transmitted waves are defined by

i
C1t+ x' cos 17+ y' sin ex

w';.(X',y',t) = A;H(clt+x'cos<x+y' sin <x) 0 G(u)du

f
ell + (x'1m) cos fJ - (y'1m) sin fJ

W~(X',y',t) = A~H(mclt+x'Cosp-y'sinf3) 0 G(u)du,

respectively, where

A' = km sin <x - sin f3 Ai
I km sin <x +sin p I

I _ 2km sin IX i

A 2 - k' . RAIm sm lX+sm I'

(2.5)

(2.6)

(2.7)

(2.8)

f3 = cos - I(m cos IX)

m = C2/C I < 1.

(2.9)

(2. lOa, b)

At time t = 0, the system of plane waves strikes the tip of the interface region without
bond (the interface crack), thus giving rise to a system of diffracted cylindrical shear waves
and wedge-like head waves. The pattern of wavefronts for t > 0 due to these diffracted
and plane waves is shown in Fig. 2. In addition, it is assumed that at the instant the system
of plane waves strikes the crack tip, although the interface bond does not rupture, the inter­
face stress immediately ahead of the crack tip reaches the yield value (T. Subsequently this
zone of yielding extends along the interface in the positive x'-direction with a constant
velocity v where v < C2 < CI' This extending yield zone is also shown in Fig. 2.

For t > 0, the boundary conditions can then be written as

(2.11)

(2.12)
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f3

FIG. 2. Pattern of wavefronts after the interface fla w has been struck.

while the displacement and the stress are continuous for x :2: vt, i.e.

(2.14)

(2.13)y' = 0, vt ::s;; x' < 00: Wl - W2 = °
aWl OW 2

f..I.l oy' - f..I.2 oy' = 0.

Furthermore, because the interface bonding is assumed to be rigid-perfectly plastic in
nature, the magnitude of the interface stress should nowhere be larger than the yield value
(f.

To actually solve the diffraction problem, it is convenient to define the scattered
displacements ~ and wZ by

W2 = w~ + w~.

(2.15)

(2.16)

The left-hand sides of(2.15) and (2.16) represent all motion in the two half-spaces. Therefore,
the scattered displacements comprise the effect of the interface crack on the system of
plane waves w~, w; and w~. Since the scattered displacements also satisfy wave equations
of the type given in (2.1) and w~, wl and w~ are known, it is possible to recast the problem
completely in terms of these scattered displacements. The initial conditions on ~ and Wz
are

t = O:~ = w~ = wZ = Wz == 0. (2.17)

Similarly, the boundary conditions for t > 0 can be obtained from (2.11H2.16) as

y' = 0, - 00 < x' ::s;; vt:

o~ OwZ f..I.2 sin f3 ,
f..I.l- = f..I.2:;- = (fH(x') + A~G(clt + x' cos rx)H(clt + x cos rx)

oy' vy' m

y' = 0, l't ::s;; x' < 00:~ - wZ = °
o~ oWz

f..I.l oy' - f..I.2-0y' = 0.

(2.18)

(2.19)

(2.20)
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Inspection of (2. 17)-{2.20) shows that the scattered problem is a special case of the more
general problem of a partially loaded semi-infinite flaw extending uniformly along the
interface. In the next sections we proceed to state and then solve this mathematical problem.

3. PROPAGATION OF A LOADED INTERFACE FLAW

(3.1 )Y

Let the two half-spaces described at the outset of the previous section be completely
undisturbed for t < O. Subsequent to t = 0, let the interface flaw extend in the positive
x'-direction with a constant velocity v, where v < C2 < Ct. Furthermore, let the surfaces
of the flaw be acted upon by a given shear stress distribution which travels in the negative
x'-direction with a given velocity c and covers the region - ct < x' < vt. This stress dis­
tribution is defined by

0, - 00 < x' S vt: Ilt 8""W; = 112 8:2 = f{t + x'lc)H(t + x'lc),
uY ui

where w1(x', y', t) and w2(x', y', t) are the displacements in the z'-direction for y' sO and
y' ~ 0, respectively.

To solve this mathematical problem, it is convenient to work in a coordinate system
whose origin is fixed to the tip of the moving interface flaw. Thus, as shown in Fig. 3, we
introduce the following coordinate transformation:

x = x' - nt, y = y', z = z', (3.2a, b, c, d)

where

n = vlc t < m < 1. (3.3)

In terms of these moving coordinates, the governing displacement equations of motion
for the medium of region 1 (y S 0) can be obtained by substituting (3.2) into the wave
equation (2.1). The result is

(1 _ n2)o2w1 + 8
2
w t = 02Wt _ 2n8

2
w t .

8x2 8y2 8L2 8x8. (3.4)

o 0 0 0 0 0 0 0 0

~-- if ------+~-( l-n)T-

f--""'c-------.! ------"1
b

FIG. 3. Partially loaded interface flaw propagating with a constant velocity.
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From (2.3) and (3.2) the shear stresses in region 1 become

aWl
(ryz)l = J1.l ay ,

while the particle velocity assumes the form

wl aWl aWl
-=--n-.
Cl ar ax

and

(3.5a, b)

(3.6)

(3.7)

aWz awz Wz awz awz
(ryzh = J1.z ay , (rxzh = J1.z ax' - = --n-. (3.8a, b, c)

Cl ar ax

Referring to Fig. 3 and equation (3.1) the interface conditions in the system of moving
coordinates can be written as

where

y = o,X < o:w l - Wz = cp_(x,r)H(r+bx)

aWl awz
J1.l oy = J1.z ay = f(r+ax)H(r+ax)

y = 0, x ~ O:w l - Wz = °

(3.9)

(3.10)

(3.11)

(3.12)

Cla=--,
c+v b = min( a, 1~ n)· (3. 13a, b)

(3.14)

In (3.9) and (3.12), the functions cp_ and t/J+ are, respectively, the unknown displacement
discontinuity behind the tip of the flaw and the unknown interface stress distribution ahead
of the tip. These unknown functions have been introduced so that sets of conditions for
both the displacements and their derivatives can be stated everywhere on y = 0, Ixl < 00.

The Heaviside functions multiplying cp _ and t/J + illustrate the wave propagation character
of Wl and W2. Finally, it can be checked that the initial conditions on Wl and W2 can be
written as

aWl aW2
r = o:W l =~ = W2 =~ == 0.

To solve the set of equations (3.4H3.14), Laplace transforms are introduced, first over r
and subsequently over x. The one-sided Laplace transform over the time-related variable r
is defined as

g(x, y, s) =Loo

g(x, y, r) e- St dr, (3.15)
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(3.16)

where s is a positive real number large enough to insure convergence of the integral. It is
convenient to define the two-sided Laplace transform over the spatial variable x as

g*(A, y, s) = f~oo g(x, y, s) e-s).x dx,

where Ais, in general, complex. The interval of convergence for this transform is determined
by the asymptotic behavior of g as x -. ± 00.

Performing the operations indicated by (3.15) and (3.16) on (3.4), (3.7) and (3.9H3.12)
while making use of (3.14) yields the following set of transformed equations:

y = O:w!-w! = ip!(A,s)

(3.17)

(3.18)

(3.19)

(3.20)
dw! _ dw~ _ x* J(s)

JJ.i dy - JJ.2 dy - 'I'+(A,s)+ s(a-A)'

where f(s) is the one-sided Laplace transforms of f(r).
The right-hand sides of (3.19) and (3.20) represent the twice-transformed right-hand

sides of (3.9H3.12). It can be checked that the one-sided Laplace transforms over r of the
right-hand sides of (3.9) and (3.10) vanish identically for x > 0 and behave as esbx and esax

,

respectively, as x -. - 00. Similarly, the one-sided transforms of the right-hand side of
(3.12) vanish for x < 0 and behave as e-sx/(i-n) as x -. 00. Therefore, since s is real and
positive, the functions ip! and 1/(a - A) are valid as transforms only in that part of the
complex A-plane defined by, respectively, Re A < band Re A < a. Analogously, lfit exists
as a transform for Re A > -1/(1- n). Furthermore, because Wi and W2 vanish identically
for y = 0 outside the range - r/b < x < (1- n)r, their transforms over x and r can be
expected to exist in that part of the complex A-plane defined by -1/(1- n) < Re A < b.
From the foregoing considerations it can be concluded that the vertical strip in the complex
A-plane defined by - 1/(1- n) < Re A < b comprises a domain of analyticity common to
all the transformed functions.

Returning to the differential equations (3.17) and (3.18), we 0 btain the following bounded
solutions:

where

Y < O' w*(A y s) = B (A s) eS(1-
n2 rt ytl).)y- . 1 , , l' ,

ReY2 ~ 0,

(3.21)

(3.22)

(3.23)

(3.24)
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To insure that Re YI ~ 0 and Re Yz ~ 0 everywhere in the cut complex A-plane, appropriate
Riemann sheets are chosen for YI and Yz. In (3.21) and (3.22), BI(A,S) and Bz(A,S) are
unknown functions which are analytic in the strip -1/(1- n) < Re A < b.

4. SOLUTIONS BY MEANS OF THE WIENER-HOPF TECHNIQUE

From (3.19) and (3.20) we can obtain the following equations:

y = O:w!-w~ = ip!.(A,S) (4.1)

(4.3)

(4.4)

dw! dw~
J11 dy - J1z dy = O. (4.2)

Then, substituting (3.21) and (3.22) into (4.1) and (4.2) enables us to eliminate B I and Bz
as follows:

(1- nZ/mZ)+Yz(A)ip~(A, s)
B I(A, s) = J1z J11 (1- nZ)+YI(A)+ J1z(1- nZ/mZ)+Yz(A)

(1- nZ)+YI(A)ip~(A,s)
Bz(A, s) = - J11 J11 (1 - nZ)+y I(A) + J1z(1 - nZ/mZ)+Yz(A)'

whereupon equation (3.20) can be made to yield the following equation of the Wiener-Hopf
type:

(1-n z)!(1-nz/m Z)+YI(A)YZ(A)sip!.(A, s) _ .n (A) .f(s)
J11J1Z J11(I-nZ)+YI(A)+J1z(l-nz/mZ)+Yz(A) - 0/+ ,s + s(a-A)'

Upon examining the left-hand side of (4.5), it is noted that

I
· J11(I-nZ)+YI(A)+J1z(1-nz/mZ)+Yz(A) _ 1 k (1-IIZ )+
1m -+m---

P.I~~ J1z(I-II Z/m Z)+Yz(A) mZ_IIz .

It is therefore convenient to define the related function F(A), where

(
1- liZ ) +

K = 1+km Z Z .
m -II

(4.5)

(4.6)

(4.7)

(4.8)

It can be checked that F(le) is analytic in the strip -1/(1- II) < Re A < 1/(1 + II) and
moreover, from (4.6H4.8) it has the property that

lim In F(A) = O.
IAI~ X)

(4.9)

Then, from analytic function theory it is known that F(A) can be factored into a product of
functions which are analytic in overlapping half-planes, the overlap region being the strip
-1/(1- II) < Re A < 1/(1 + n). Performing this factorization leads to the result

(4.10)
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where, from Noble [3], we have that

_ -1 fC +
joo In F(z) dz

InF+(A)-2· -A
1r1 c-joo z

_~ fd
+

joo In F(z) dz
In F_(A) - 2 . --A .

m d-ioo ~

In (4.11) and (4.12), c and d are any real numbers such that

-1/0-n) < c < ReA < d < 1/0+n).
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(4.11 )

(4.12)

(4.13)

(4.14)

By using Cauchy's theorem, the right-hand sides of(4.11) and (4.12) can be transformed into
integrals about, respectively, the left-hand and right-hand branch cuts of In F(z) in the
complex z-plane. This leads to the following expressions for F +(A) and L(A):

{
_I f1/(m+nl _l[km[O-n)z+1J+[(1+n)z±1J+J dZ}

F+(A)=exp +- tan .l. .l. -- •

- 1r l/(1+n) [1±(m+n)z]2[1+(m-n)z]2 Z±A

It can be checked that, indeed, F+ is analytic for Re A > -1/(1- n) while F_ is analytic
for Re A < I/O + n). It is now possible to rewrite (4.5) as follows:

(4.15)

where

(4.16a, b)

(4.17)

(4.18)

(4.20)

(4.19)

Upon studying the right-hand side of (4.15), we notice that the function F+/')I1+(a-A) is
analytic in the strip - 1/( 1- n) < Re A < a and that, moreover,

F+(A) 3

)'1 + ().)(a _ A) ~ 0(IAI-2) as IAI -> 00.

Then, once again from analytic function theory, it is known that this function can be split
into the sum of two functions which are analytic in overlapping half-planes, the overlap
region being the strip -1/0- n) < Re A < a. Performing this splitting by inspection yields

F+(A) ,
)'I+(A)(a-A) = G+(A)+G_(Al,

where

G (A) = F+(a)
- ')II +(a)(a-A)

G+().) = [F+(A) _!+(a)J_I_.
')11 +(A) ')II +(a) a-A

It can be seen that, indeed, G+ is analytic for Re i > - I/O - n) while G_ is analytic for
Re A < a. Using these results, we can now rearrange (4.15) to yield
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From the above manipulations it is clear that the left-hand and right-hand sides of
(4.21) are analytic in, respectively, the overlapping half-planes Re), < band Re A. >
-1/(1- n). Therefore, by analytic continuation, both sides of (4.21) represent the same
entire function, say E(A., s). Now from the standard Abelian theorems for Laplace transforms
(see Noble [3J) and using (3.9), (3.11) and (3.19) we obtain

w1(0-,0,s)-w z(0-,0,s)- lim sA.q>!.(A.,s). (4.22)
1'·1-->00

But (3.11) implies that the left-hand side of (4.22) must vanish. Therefore, we have that

q>!.(A.,s) '" 0(..1.- 1-<), E > 0, as 1..1.1-+ 00. (4.23)

Then, from checking the left-hand side of(4.21) in conjunction with (4.14), (4.16b) and (4.19),
we see that

lim E(A., s) = o.
1'·1-->00

(4.24)

(4.26)

(4.25)

But from Liouville's theorem concerning entire functions, (4.24) implies that E == 0,
whereupon (4.21) can be made to yield the results

-* (A. _ KL(Je)G _(A.)j(s)
qJ - , s) - (1- z)t (1) Z/11 n Y1_ AS

,7:* (1 ) = - Y1 + (Je)G + (A.)j(s)
'f'+A,S sF+(A.)·

Then, substituting (4.25) into (4.3) and (4.4) we obtain

(4.27)

(4.28)

(4.30)

(4.29)

G_(A.)j(s)
B1(A., s) = /11(I-nZ)ty1 _(A.)F+(A.)sz

- y1+ (A.)G _(A.)j(s)
Bz{Je, s) = /1z(1- nZ/mZ)tYz(A.)F+ (Je)sz '

whereupon (3.21) and (3.22) can be made to yield

_ G_(Je)j(s)eS(1-n2)ty t<).)y

y ~ O:w!(A.,y,s) = /11(I-nZ)ty1 _(A.)F+(A.)sZ

> ._* _ _ Y1+(Je)G_(A.)J(s)e-S(1-n2/m2)tY2().)Y
y - O. Wz(Je, y, s) - /1z(1- nZ/mZ)tyz{A.)F+ (Je)SZ

With the above expressions at hand, the mathematical problem stated in the previous
section is essentially solved. Since, in later sections, we will be interested in the interface
stress ahead of the extending tip of the flaw (x > 0) we list for future reference

_* (Je 0 ) _ dw!(Je, 0, s) _ dw!(A., 0, s)
cyz , ,s - /11 dy - /1z dy

Y1 + (A.)G -(Je)f{s)
sF+(Je)

(4.31)
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As a closing comment to this section it is noted that by means of the substitution
z = l/(CFn), equation (4.14) can be expressed in the form

{-lfl -l[ (1-(2)tJ d( }
F±(A) = exp +; m tan km (2_ m2 ((+n)[l±A((+n)] '

which is more convenient for numerical computations.

5. INVERSIONS OF THE TRANSFORMS

(4.32)

(5.1)

To invert the double transforms of the interface stress, de Hoop's modification of
Cagniard's method [4] is used. In this procedure, the path of integration of the inversion
integral for the two-sided Laplace transform over x is shifted to another path in the complex
A-plane, called a Cagniard contour, such that the resulting integral is recognizable as an
explicit one-sided Laplace transform over 't.

The inverse of the bilateral Laplace transform over x is defined by

S fAO+'oo
g(x) = -. g*(SA) eSAX dA,

2m AO - ioo

where Ao must lie in the range of analyticity of the transform g*. Thus, the Laplace transform
of the interface stress ahead of the crack tip may be obtained in a formal manner from (4.31)
as

where

-l/(l-n) < Ao < b.

x> 0, (5.2)

(5.3)

Upon examining the integrand of (5.2), it can be checked that Y1+G_/F+ - O(IAI- t ) as
IAI --+ 00. Then, because S and x are both real and strictly positive, the integrand of (5.2)
vanishesexponentiallyforReA < OaslAI--+ 00. Moreover, because a > O'Yl+G_/F+ has no
poles in the complex A-plane for Re A < O. Therefore, by Cauchy's theorem, the integral
shown in (5.2) may be replaced by an integration about the branch cut of the integrand in
the left-hand half of the complex A-plane. Then, it can be shown that (5.2) takes the form

x> 0,

where Yli+ is the imaginary part of Yl +,

(e 1) t
Yli+(-e/x) = ~-l-n .

(5.6)

(5.7)
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(5.8)

X> O.

The inverse Laplace transform over the time-related variable r of (5.6) can be obtained
by inspection. Then. making use of (4.19) and introducing the change of variable ~ = XII

we obtain the following expression for the interface stress ahead of the crack tip:

_ F+(a) f~ }'li+( -1I)f(r-xu)H~:-x~du

nY1+(a) 1/(m-n) F+(-u)(a+lI)

- KF+(a) f"'·-o, ((-,1Ft-U';T~XU'H]'-XU) du
n}'1+(a) 1/(1-n) 1-k2m2 _~----=-~ }'1(-ul (a+u)

m2_n2 y~(-u)

For small positive values of X we have

(5.9)

In the next section these solutions are applied to the problem offracture mechanics defined
in Section 2.

6. FRACTURE MECHANICS ASPECTS

Upon rewntmg the interface condition (2.18) in terms of the moving coordinates
defined by (3.2) and comparing it to the corresponding condition for the mathematical
problem (3.10), it is noted that the solution for the boundary conditions (2.18H2.20)
can be obtained as the superposition of the solutions to two separate problems of the type
solved in Sections 3-5. For the first of these. we have

1
a =~.

n

1
b=-.

l+n
(6.1a. b, c)

while for the second

(6.2a. b)a
__ b __ cos IY. • sin fj t ( X cos IY. )

f(r+ax) = J12--A2G r+ .
1+n cos IY. m 1+n cos IY.

The solution to the diffraction problem defined in Section 2 can then be obtained by
superimposing the system of plane waves given by (2.4H2.6).

It should be noted that the solutions thus obtained contain the extension velocity of
the yield zone as a parameter. This velocity. although assumed to be subsonic. is otherwise
completely unspecified. To determine this velocity. we require that the mathematical
solutions satisfy yet another condition. which is obtained by an examination of the fracture
mechanics aspects of the problem. From (5.9) it can be seen that the interface stress exhibits
a square-root singularity at the leading edge of the yield zone. thus seeming to violate the
assumption of a rigid-perfectly plastic interface bond. Following the work of Dugdale [5J
and Barenblatt [6J. we will. however. append the condition that the components of the
stress distributions are related such that the square-root singularities in the interface stress
cancel out at the leading edge of the yield zone. Then. from (5.9). (6.1) and (6.2) we see that
we must have

G(u) = H(u). (6.3)
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(
COS e< )

. F+
sm f3 t 1+n cos e<

-J12~ A 2 ( ).m COSet
11+

1+n cos e<

(6.4)

Condition (6.3) states that the assumed constant velocity of the leading edge of the yield
zone can be attained only if the incident plane wave is a step-stress pulse. From (2.4) it can
be checked that the actual magnitude of this pulse T, is giv~n by

(6.5)

whereupon, making use of (2.8), (2.9) and (4.32), equation (6.4) can be rearranged to yield

'S _ km sin e< + sin f3 ( n )+) (6.6)- . , M(cos e< ,
a 2 sm f3(1 - cos e<)T 1+n cos e<

where M(u) is obtained, after some manipulation, and by employing equation (4.32), as

{
I fl -I[ (I-Z 2 )+J dz }M(u)=exp ;1 m tan km Z2_ m2 z(l+zu)' (6.7)

The expression (6.6) can now be solved for the normalized yield zone velocity n = vic i as

v

[
km sin e< +sin(f3)M(cos e<)J 2 (T,) 2- - cos e<

2 sin f3(1- cos e<)! a

(6.8)

Thus, the condition for the removal of the stress singularities gives the relation needed to
determine the yield zone extension velocity in terms of the incident stress T,. For various
values of TJa, k and m, the value of vic I is plotted versus the value of the angle of incidence
e< in Fig. 4.

With the results of the previous section thus interpreted, the superposition procedure
outlined above gives complete solutions to the originally stated fracture mechanics
problem. After some manipulation the interface stress ahead of the uniformly extending
yield zone can be expressed in terms of the fixed coordinates as

'0 ) = aJnJm (l-U)! M(-l/u)H(u-x'/T)d
Tyz(X, ,T U

n n U - n u(1 +u cos e<)

2 sin e< sin f3
- km sin e< + sin f3 T"

x' > nT. (6.9)

Upon concluding this section it should again be noted that we have obtained basically
a short-time solution. It is to be expected that at some time ter > 0 the relative displacement
between the two sides of the yield zone near the tip of the original flaw (x' = 0 or x = - C Iter)
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FIG. 4. Velocity of the leading edge of the zone of interface yielding as a function of iX, for Ill/1l2 = 10
and for various values of 'Ju.

becomes so great that the bond between the half-spaces there actually ruptures. Ifwe assume
that the magnitude of this critical relative displacement for rupture is a known property
of the bond, say <5wcr ' then we can compute

tcr = owcr/c 1IK(IX, n)1.

where K(IX, n) can be computed as

K(IX, n) = (J.Jn fl M(l/u) du
1CJ1.1 0 (n+u)t(1-u)t(1-ucoslX)

(Jm.Jnfm M(l/u)(l +u)t du 2r~
+-- +-

1CJ1.2 0 (n +u)t(m2
- u2)t(1- u cos IX) J1.1·

(6.10)

(6.11)

7. CONCLUDING REMARKS

In this paper we have examined the extension of a flaw along the bonded interface of
two elastic solids of different elastic constants and mass densities. The extension is caused
by stress concentrations that are generated when a system oftransient horizontally polarized
shear waves strikes the tip of the flaw. It is assumed that rupture of the adhesive bond is
preceded by yielding of the adhesive, but not of the adjoining elastic materials. Thus, as the
system of waves strikes the flaw a region of yielding is assumed to develop at the interface.
It is assumed that the adhesive behaves as a perfectly plastic material, so that the stress in
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the zone of interface yielding is uniform and equal to the yield stress. The speed of the
leading edge of the zone of yielding is computed from the condition that the interface stress
does not exceed the yield stress. For a system of step-stress waves the zone of interface
yielding initially extends linearly with time. For various values of the parameters defining
the materials and the system of waves the velocity of the leading edge of the zone of yielding
is shown in Fig. 4. After a certain amount of yielding has taken place the bond ruptures at the
trailing edge of the zone of yielding and additional free surface is produced. Analytic
expressions are presented for the time of rupture and for the interface stress ahead of the
leading edge of the zone of yielding.

The model that is used in this paper to account for plastic flow in the adhesive bond is
analogous to the Dugdale model for the description of ductility effects in a homogeneous
material. For a homogeneous material the Dugdale model assumes a narrow zone of
yielding in the plane of the crack. At least for static problems there is, however, evidence
that the plastic zone in the vicinity of a crack tip in a homogeneous material is a region of
some width. On the other hand, for two adhesively joined solids it is not unreasonable to
assume that the adhesive has such properties that the stresses in the vicinity of the tip of an
interface flaw are released by yielding of the adhesive, without plastic flow of the adjoining
materials.

For anti-plane shear the discontinuity in the surface tractions at the trailing edge of the
plastic zone produces a logarithmic singularity in the stress Lxz . Conceptually the model
can easily be modified to employ a ramp-type distribution of the yield stress which would
not give rise to logarithmic singularities. It can then, however, be argued that for the
principal purpose of the analysis, which is to determine the locations of the leading edge of
the zone of interface yielding, the time of rupture and the interface stress ahead of the
leading edge of the yield zone, the difference befween a ramp-type distribution and a step­
distribution of the yield stress is not significant enough to abandon the analytically much
more amenable step-distribution.
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A6cTpaKT-Pa6oTa HccneAyeT npo~ecc Ha'lana pac~enneHH~ Ha nOBepXHOCTH pa3Aena AByX ynpyrHx
TBepAblX Ten, o6naAalOLUHX pa3HblMH ynpyrHMH nOCTo~HHbIMH H nnoTHoCT~MH MaCCbl. 3TO pac~enneHHe

npOHcxoAHT BCneACTBHe KOH~eHTpa~Hll Hanp~lKeHHll, KOTopble npoH3BoA~T, KorAa cHCTeMa HeCTa~HOH­

apHblX ropH30HTanbHo non~pH3HpoBaHHblX BonH CABHra YAap~eT B BepTHHy Tpell.\HHbl nOBepXHOCTH
pa3Aena. npeAnonaraeTc~'ITO pa3pyweHHe CB~3b1BalOll.\erOCO~AHHeHH~Ha'lH~eTC~nyTeM Te'leHH~ caMoro
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C/..lenJleHHlI. YKaJaHO, 'ITO LlJllI CHCTeMbI BOJIH. CKa'lKOo6paJHbIX HanplllKeHHll, JOHa Te'leHlIlI nOBepXHOCTII

paJLleJla Ha'laJlbHO YBeJlH'IHBaeTClI JlHHeHHO B JaBHCHMOCTH OT BpeMeHH. )l;JllI paJHbIX JHa'leHHH napaMeT­

POB, onpeAenlllOWIIX MaTepHanbl H CHCTeMbl BOJlH, Bbl'lHCnlleTClI CKOpOCTb BeAywero Kpall 30Hbl Te'leHHlI

nOBepXHOCHI paeLlena. )l;alOTclI aHanHTH'IeCKHe BblpalKeHlIlI Llnll BpeMeHH paJpbIBa H LlJllI HanplIlKeHlIlI Ha

nOBepXHOCTH paJAena, Llnll 06naCTH nepeLl 10HOH Te'leHHlI.


